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Abstract 

This contribution deals with a relatively neglected area of meshing of a pinion-rack pair. Although it is 

in principle for a mesh between a pinion and a wheel with a very large number of teeth (infinitely one) 

so they can not apply all calculations of a pair pinion-wheel. This is mainly due the fact that they cannot 

work with neither central distances nor wheel diameters. Despite all relevant geometrical and meshing 

calculations are relatively easy ones. 
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INTRODUCTION 

Pair pinion-rack is widespread in the area of gearing transmissions. As far as data for designers there is 

relatively well processed area of loading capacity calculations. But an area of geometric design is 

slightly neglected. Since a rack is a part of a wheel with infinitely big diameter, so there is this rack 

replaced by a wheel with a large number of teeth – for instance 1000 in geometric calculations. Results 

of such a mesh look like a lot to a mesh pinion-rack. But they are not fully exact. For achieving abso-

lutely exact data it should be necessary to utilize equations which are commonly used for a design of a 

pair pinion-wheel. But they must be solved as limits for z2 →∞. Some equations would be then unsolv-

able or they would became indeterminate expressions. This contribution shows some solving of these 

equations in the form right for toothed rack, otherwise z2 →∞. Basic profile of the rack is on the fig. 1. 

On the fig. 2 is the basic profile of the tool for manufacturing of racks. It is a complex tool including for 

chamfering and for a protuberance undercutting of the rack. 

 
         Fig. 1                   Fig. 2 

 

MESH PINION – RACK 

It is necessary to realize that a rack cannot be shifted (it is impossible to use other part of an involute 

with a different curvature). Due to it is always valid x2 = 0. The next constant is working pressure angle 

which is independent on pinion addendum coefficient modification x1. It applies αwt = αt. All detail are 

on the fig. 3. 
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x1 = 0 

O1C = 0,5 · d1 

O1C2 = 0,5 · d1 

 

 

 

 

 

 

 

 

 

 

x1 > 0 

O1C = 0,5 · d1 

O1C2 = 0,5 · d1 + x1· mn 

 

 

 

 

 

 

 

 

 

 

x1 < 0 

O1C = 0,5 · d1 

O1C2 = 0,5 · d1 + x1· mn 

 

 

 

 

 

 

   Fig. 3 

 

All important points at the rack tooth flank result from a mesh. They fully correspond with diameters of 

an ordinary wheel. Instead of diameters (infinitely big ones) heights parameters related to the reference 

line (point C2) are used. There are basic dimensions on the fig. 4. Their nomenclature follows. Corre-

sponding wheel nomenclature is in parentheses. 
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hf2  – root height (root diameter) 

hFf2  – root form height (root form diameter) 

hNf2  – usable root height (usable root diameter) 

hNa2  – usable tip height (usable tip diameter) 

hFa2  – tip form height (tip form diameter) 

haE2  – generated height, usual the same as hFa2  

              (generated tip diameter) 

ha2  – tip height (tip diameter) 

st2  – transverse reference thickness  

swt2  – transverse pitch thickness  

saEt2  – transverse thickness at haE2 

sat2  – transverse tip thickness 

 

  Fig. 4 

 

INTERFERENCE 

Interference also can occur during pinion – rack mesh. Either on the pinion’s root or on rack’s root. 

When a pinion is undercut one (or protuberantly undercut) the interference on pinion’s root cannot oc-

cur. A rack cannot be undercut by common manufacturing. The undercutting of the rack appears only 

when it is protuberantly manufactured. And when the rack is protuberantly manufactured – interference 

cannot occur. 

Interference on pinion’s root 

 

On the fig.5 relevant diameters goes through points 

- 

 

F1 (F’1) – ϕ dF1 (ϕ dFf1) 

A1 – ϕ dA1 (ϕ dNf1) 

C – ϕ d1  

N1 – ϕ db1  

 

 

 

 

    Fig. 5 

Interference on the pinion’s root always occurs when it is valid for angles  αA1 ≤ αF1 

Diameters d1 , db1 and dF1 which are defined by parameters of the pinion are easy to calculate. For di-

ameter  dA1 it applies – 

 

𝐴𝐶 = 
ℎ𝑎2 − 𝑥1 ∙ 𝑚𝑛

𝑠𝑖𝑛𝛼𝑡
 

 

𝑁1𝐴 = 0,5 ⋅ 𝑑𝑏1 ⋅ tan ∝𝑡 − 𝐴𝐶                          (1)

    

 

𝑑𝐴1 = 𝑑𝑁𝑓1 = 2 ⋅ √(0,5 ⋅ 𝑑𝑏1)
2 + (𝑁1𝐴)

2            (2) 
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∝𝐴1= 𝑎𝑟𝑐𝑐𝑜𝑠 
𝑑𝑏1

𝑑𝐴1
                 (3) 

∝𝐹1= 𝑎𝑟𝑐𝑐𝑜𝑠 
𝑑𝑏1

𝑑𝐹1
               (4) 

   

When chamfering of rack crests is used, instead of addendum height ha2 the height to do beginning of 

chamfering haE2 (hFa2) is used. On the basis of equations 2,3 and 4 it is easy to enumerate the height hNa2 

(point A joins with the point F1 when a pinion is undercut). 

 

Interference on rack’s root 

    

Interference on the rack’s root always occurs 

when it is valid   hFf2 ≤ hNf2 

 

Diameters d1, db1 and dE1 which are defined 

by parameters of the pinion are easy to calcu-

late. For height hNf2 it applies – 

 

𝑁1𝐸 = 0,5 ⋅ 𝑑𝑏1 ⋅ tan ∝𝐸1 

 

∝𝐸1= 𝑎𝑟𝑐𝑐𝑜𝑠 
𝑑𝑏1

𝑑𝐸1
       (5) 

 

 

Fig. 6  

𝐶𝐸 = 𝑁1𝐸 − 𝑁1𝐶 = 0,5 ⋅ 𝑑𝑏1 ⋅ (tan ∝𝐸1 − tan ∝𝑡) 

 

ℎ𝑁𝑓2 = 𝐶𝐸 ⋅ sin ∝𝑡 − 𝑥1 ∙ 𝑚𝑛              (6) 

When chamfering of pinion crests is used, instead of tip diameter da1 for finding of diameter dE1 the 

diameter of beginning of chamfering daE1 (dFa1) is used. It is also easy to enumerate diameter da1max at 

the interference limit. When rack is protuberantly undercut the interference cannot occur. 

 

CONTACT RATIO 

Transverse contact ratio εα is relation between length of a meshing line and transverse pitch on base 

diameter pbt. Length of a meshing line is defined by points A and E as it is seen on the fig. 6. It applies 

that this length can be enumerate as AE = N1E – N1A. Where N1A is in the equation (1). 

 

𝑁1𝐸 = 0,5 ⋅ 𝑑𝑏1 ⋅ tan ∝𝐸1 = √(0,5 ∙ 𝑑𝐸1)
2 − (0,5 ∙ 𝑑𝑏1)

2 

 

𝜀𝛼 =
N1E – N1A

𝑝𝑏𝑡
=

N1E – N1A

𝜋 ∙ 𝑚𝑛 ∙ cos 𝛼𝑡
∙ cos  𝛽 

Overlap ratio εβ is enumerated consistently with ordinary helical gearings. 

𝜀𝛽 =
b ∙ sin β

𝜋 ∙ 𝑚𝑛
 

 

 

 

  (7) 

  (8) 
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RELATIVE SLIDINGS 

For rack applies that it has the same straight velocity v2 

in each point of the mesh. This figures out from a circum-

ferential speed of the pinion at the reference circle. Both 

velocities are the same at the meshing point C and they 

have the same direction too  

 

→ v1 = v2.  See fig.7. 

 

 

 

 

Fig. 7 

 For a relative sliding at pinion’s root (point A) it applies for sliding velocities (perpendicular to 

the meshing line) – 

 

𝜗𝐴1 =
𝑣1𝑡𝐴1 − 𝑣2𝑡
𝑣1𝑡𝐴1

= 
𝑣1 ∙ sin𝛼𝐴1 − 𝑣2 ∙ sin 𝛼𝑡

𝑣1 ∙ sin𝛼𝐴1
= 
𝑟𝐴1 ∙ ω1 ∙ sin 𝛼𝐴1 − 𝑟1 ∙ ω1 ∙ sin 𝛼𝑡

𝑟𝐴1 ∙ ω1 ∙ sin 𝛼𝐴1
    

 

After modifying  –      Wheel’s root (point E) – 

 

𝜗𝐴1 = 1 −
𝑑1
𝑑𝐴1

∙  
sin𝛼𝑡
sin 𝛼𝐴1

                                                          𝜗𝐸2 = 1 −
𝑑𝐸1
𝑑1
∙  
sin 𝛼𝐸1
sin 𝛼𝑡

 

 

Pinion’s tip (point E) –      Wheel’s tip (point A) – 

 

𝜗𝐸1 = 1 −
𝑑1
𝑑𝐸1

∙  
sin 𝛼𝑡
sin 𝛼𝐸1

                                                           𝜗𝐴2 = 1 −
𝑑𝐴1
𝑑1
∙  
sin𝛼𝐴1
sin𝛼𝑡

 

 

Addendum modification coefficient for balanced specific slidings 

To get the same relative slidings at pinion’s and rack’s roots (or tips) can apply by suitable choice of 

pinion’s AMD (AMD for a rack is always zero). If relative slidings at roots are the same, relative slidings 

at tips are the same by themselves. Deriving is made for roots.   

 

𝜗𝐴1 = 𝜗𝐸2     →   1 −
𝑑1
𝑑𝐴1

∙  
sin 𝛼𝑡
sin𝛼𝐴1

= 1 −
𝑑𝐸1
𝑑1
∙  
sin 𝛼𝐸1
sin 𝛼𝑡

 

 

(𝑑1 ∙ sin𝛼𝑡)
2 − (𝑑𝐸1 ∙ sin 𝛼𝐸1) ∙ (𝑑𝐴1 ∙ sin 𝛼𝐴1) = 0   

 

  As far as gearing without undercutting, protuberance and chamfering think of, it is possible to 

use dE1 = da1. The diameter dA1 is derived from the rack’s height ha2, see fig 5 and equation (2). 

𝑑𝐸1 = 𝑑𝑎1 = 𝑑1 + 2 ∙ (ℎ𝑎1
∗ + 𝑥1) ∙ 𝑚𝑛 

 

𝑑𝐴1 = 2 ⋅ √(
𝑑𝑏1
2
)
2

+ (
𝑑𝑏1
2
⋅ tan ∝𝑡 −

ℎ𝑎2 − 𝑥1 ∙ 𝑚𝑛
𝑠𝑖𝑛𝛼𝑡

)
2
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After substitution  – 

 

(𝑑1 ∙ sin 𝛼𝑡)
2 − ((𝑑1 + 2 ∙ (ℎ𝑎1

∗ + 𝑥1) ∙ 𝑚𝑛) ∙ 𝑠𝑖𝑛 (𝑎𝑟𝑐𝑐𝑜𝑠 
𝑑𝑏1

𝑑1 + 2 ∙ (ℎ𝑎1
∗ + 𝑥1) ∙ 𝑚𝑛

)) ∙

∙

(

 
 
 
 

2 ⋅ √(
𝑑𝑏1
2
)
2

+ (
𝑑𝑏1
2
⋅ tan ∝𝑡 −

ℎ𝑎2 − 𝑥1 ∙ 𝑚𝑛
𝑠𝑖𝑛𝛼𝑡

)
2

∙  𝑠𝑖𝑛

(

 
 
 

𝑎𝑟𝑐𝑐𝑜𝑠 
𝑑𝑏1

2 ⋅ √(
𝑑𝑏1
2
)
2

+ (
𝑑𝑏1
2
⋅ tan ∝𝑡 −

ℎ𝑎2 − 𝑥1 ∙ 𝑚𝑛
𝑠𝑖𝑛𝛼𝑡

)
2

)

 
 
 

)

 
 
 
 

= 0 

 

Although the resulting homogeneous nonlinear equation is extensive, its numerical solution is not diffi-

cult. For the sample solution is designed for a couple with a standard profile and with straight teeth, 

number of teeth of the pinion z1 = 20.  

For a pinion with no  AMC  the value of specific sliding at a root is extremely high – 

 x1 = 0     →    υA1 = -5,890 

 

After calculation for balanced specific slidings (see fig. 8) 

– 

x1 = 0,4429     →    υA1 = -0,909 

 

 

Fig. 8 

 

CONCLUSIONS 

Regard to the relatively widespread use of the racks in engineering it is helpful to use for the calculation 

of basic geometric and meshing parameters exact formulae. Substitution a rack along with a wheel with 

large number of teeth in the calculations is for many cases insufficient. In precision engineering (ma-

chine tools, measuring instr.), it is desirable to use precise calculations. This article presents them. 
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